Microbiological Hydroxylation of 3β,7β-Dihydroxykaurenolide

By George Ellames and James R. Hanson * The School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ

Hydroxylation of 3β , 7β -dihydroxykaurenolide by *Rhizopus arrhizus* affords 3β , 7β , 11α - and 3β , 7β ,13-trihydroxy-kaurenolides in low yield.

HYDROXYLATION at C-11¹ and C-13² is a known minor substitution pattern of the kaurenolide metabolites of the fungus *Gibberella fujikuroi*. We have shown that the microbiological transformation of 7α - and 7β hydroxykaurenolide by the fungus *Rhizopus arrhizus*

¹ P. Hedden, J. MacMillan, and M. J. Grinstead, J.C.S. Perkin I, 1973, 2773.

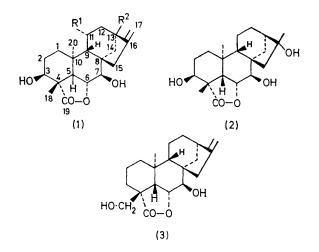
² E. P. Serebryakov, A. V. Simolin, V. F. Kucherov, and B. V. Rosynov, *Tetrahedron*, 1970, **26**, 5215.

affords a method of hydroxylation at both C-11 and C-13.³ Since 3β ,7 β -⁴ and 7 β ,18-dihydroxykaurenolide ⁵ are major metabolites of *Gibberella fujikuroi*, we considered that 3β ,7 β ,11 α -, 3β ,7 β ,13-, 7 β ,11 α ,18-, and

³ J. R. Hanson, G. Savona, and M. Siverns, *J.C.S. Perkin I*, 1974, 2001.

⁴ J. H. Bateson and B. E. Cross, *J.C.S. Perkin I*, 1972, 1117.
 ⁵ B. E. Cross, R. H. B. Galt, and J. R. Hanson, *J. Chem. Soc.*, 1963, 2944.

 7β , 13, 18-trihydroxykaurenolides might occur as minor metabolites. We therefore examined the microbiological hydroxylation of the dihydroxykaurenolides by *Rhizopus arrhizus* in an effort to prepare authentic material.


3β,7β-Dihydroxykaurenolide (1; $R^1 = R^2 = H$) was incubated with shake cultures of *Rhizopus arrhizus* for 7 days. Under various conditions of culture, a substantial quantity of the starting material was recovered, together with three minor metabolites. The structures of these were readily assigned from their ¹H and ¹³C n.m.r. spectra. Because of their low solubility, the n.m.r. spectra were determined in pentadeuteriopyridine. The ¹³C resonances of 3β,7β- and 7β,18-dihydroxykaurenolide were readily assigned (see Table) by comparison with our previous results.³ In particular a resonance associated with C-11 appeared at δ 17.4 and

The second metabolite $(M^+ 348)$, which retained the ¹³C n.m.r. signals associated with rings A and B, lacked the C-13 resonance at δ 38.2 and showed a new C(OH) resonance at § 77.2. In addition C-12 and -14 were deshielded in a manner consonant with 13-hydroxylation. In the ¹H n.m.r. spectrum, one of the olefinic 17-H resonances (τ 4.85 and 4.30) was deshielded—a solvent shift which has been noted in both the 13-hydroxykaurenolides and the gibberellins.⁶ Consequently this hydroxylation product was identified as 33,73,13-trihydroxykaurenolide (1; $R^1 = H, R^2 = OH$). The third minor metabolite, only isolated on one occasion, was identified as 3β , 7β , 16ξ -trihydroxykauranolide (2). The mass spectrum $(M^+ 350)$ agreed with the formula C₂₀H₃₀O₅, and the ¹H n.m.r. spectrum contained three C-CH₃ resonances, yet lacked additional CH·O signals and olefinic CH signals.

¹³C N.m.r. spectra of some kaurenolides (in $[{}^{2}H_{5}]$ pyridine; δ in p.p.m. from Me₄Si)

		Carbon atom																		
Compound	$\overline{1}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
(1; $R^1 = R^2 = H$)	36.6	27.5			52.2	84.5	70.9	46.1	56.4		17.4	32.9	38.2	34.2	42.4	160.5	106.9	18.4	182.6	$\frac{22.4}{21.2}$
(1; $R^1 = OH, R^2 = H$)	$36.9 \\ 37.0$	$17.4 \\ 27.7$	$23.5 \\ 65.8$	$49.1 \\ 47.1$	$ \begin{array}{r} 48.4 \\ 52.7 \end{array} $	85.7 84.9	70.9 71.0	45.9 45.9	$55.8 \\ 60.2$	$\substack{\textbf{34.3}\\\textbf{35.6}}$	$17.4 \\ 64.2$	$32.9 \\ 46.7$	$\substack{38.2\\38.8}$	$34.3 \\ 34.6$	$\substack{42.5\\43.1}$	$160.5 \\ 160.5$	$106.8 \\ 106.7$	$\begin{array}{c} 68.3 \\ 18.6 \end{array}$	10.00	$21.2 \\ 25.0$
$(1; R^1 = H, \dot{R}^2 = OH)$	36,6	27.5	65.6	47.3	52.5	84.3	70.9	43.7	56.2	34.2	19.1	40.9	77.2	41.3	42.7	161.9	106.4	18.4	182.7	22.4

one with C-13 at δ 38.2. The first metabolite (M^+ 348), identified as 3β , 7β , 11α -trihydroxykaurenolide (1; $R^1 =$ OH, $R^2 =$ H), lacked the signal at δ 17.4 in its ¹³C n.m.r. spectrum but had a new CH(OH) signal at δ 64.2. Furthermore, C-9 (δ 60.2) and to C-12 (46.7) were deshielded in comparison with the corresponding nuclei

in the starting material, by a similar extent to that encountered in the 7-hydroxykaurenolide series.³ In the ¹H n.m.r. spectrum there was a new CH(OH) resonance (τ 5.60) and the 20-protons (τ 8.33) were markedly deshielded in comparison with 3 β ,7 β -dihydroxykaurenolide [τ (C₅D₅N) 9.01 (20-H₃) and 8.40 (18-H₃)]. The effect of an 11 α -hydroxy-group on the 20-H₃ resonance in pentadeuteriopyridine has been noted previously.^{1,3} Hence the 11 α -stereochemistry was assigned to the new hydroxy-group in this transformation product. The yields obtained in the transformations by this culture were low; hence this did not afford a means of preparing sufficient quantities of these metabolites for further transformation, for example chemical conversion into the gibberellins. Furthermore, despite several attempts, we were unable to achieve transformation of 7,18-dihydroxykaurenolide.

EXPERIMENTAL

Co-han atom

General details, including the culture conditions for *Rhizopus arrhizus*, have been described previously.³

Microbiological Hydroxylation of 3β,7β-Dihydroxykaurenolide.-The kaurenolide (2.0 g) in ethanol (40 ml) was distributed between 40 flasks (100 ml medium 3 in 250 ml flasks) of Rhizopus arrhizus and incubated for 7 days. The metabolites were recovered in ethyl acetate. Unchanged 3β , 7β -dihydroxykaurenolide (1.3 g) was recovered from the mycelium. The broth extract was purified by chromatography on silica gel. Elution with ethyl acetate gave 3β,7β-dihydroxykaurenolide (170 mg). Elution with 99:1 ethyl acetate-methanol gave a mixture of 3β , 7β , 11α - and 3β,7β,13-trihydroxykaurenolides (72 mg), which were separated by preparative layer chromatography on silica with 95:5 di-isopropyl ether-acetic acid as the mobile phase. The faster moving band gave 3β , 7β , 11α -trihydroxyhaurenolide (17 mg), which crystallized from acetone-light petroleum as prisms, m.p. 269-273° (Found: C, 67.1; H, 8.6. $C_{20}H_{28}O_5, 0.5H_2O$ requires C, 67.2; H, 8.1%), v_{max} . 3 570, 3 520, 3 490, 1 742, 1 650, and 897 cm⁻¹, τ (C₅D₅N) 8.33 (6 H, s, 18- and 20-H₃), 5.20 (1 H, m, 7-H), 4.90 (4 H, m, 3-H, 6-H, and 17-H₂), and 4.22, 3.45, and 2.62 (each d, J 4 Hz, exchanged by D₂O). The slower moving band gave 3β,7β,13-trihydroxykaurenolide (32 mg), which crystallized

⁶ J. R. Hanson, J. Chem. Soc., 1965, 5036.

from acetone–light petroleum as prisms, m.p. 260–265° (Found: C, 67.0; H, 8.1. $C_{20}H_{28}O_5, 0.5H_2O$ requires C, 67.2; H, 8.1%), ν_{max} 3 562, 3 520, 3 492, 1 740, 1 650, and 893 cm⁻¹, τ (C_5D_5N) 9.01 (3 H, s, 20-H₃), 8.38 (3 H, s, 18-H₃), 5.20 (m, 7-H, part obscured by H₂O signal), 4.90 (3 H, m, 3-H, 6-H, and 17-H), and 4.30 (1 H, m, 17-H). On one occasion an incubation with 3 β ,7 β -dihydroxy-kaurenolide (1.5 g) gave, after purification as above,

3 β ,7 β ,16 ξ -trihydroxykauranolide (28 mg), m.p. 265—267° (Found: C, 64.5; H, 8.4. C₂₀H₃₀O₅,H₂O requires C, 65.2; H, 8.7%), ν_{max} , 3 390, 3 290, and 1 777 cm⁻¹, τ (C₅D₅N) 9.01 (3 H, s, 20-H₃), 8.42 (3 H, s, 17-H), 8.38 (3 H, s, 18-H), 5.20 (1 H, m, 7-H), and 5.10 (2 H, m, 3- and 6-H).

We thank Mrs. A. Ward for growing the fermentations.

[6/416 Received, 1st March, 1976]

[©] Copyright 1976 by The Chemical Society